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Although widely used in practice, the behavior and accuracy of the popular module identification technique
called modularity maximization is not well understood in practical contexts. Here, we present a broad charac-
terization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for
modularity maximization. Second, we show that the modularity function Q exhibits extreme degeneracies: it
typically admits an exponential number of distinct high-scoring solutions and typically lacks a clear global
maximum. Third, we derive the limiting behavior of the maximum modularity Qmax for one model of infinitely
modular networks, showing that it depends strongly both on the size of the network and on the number of
modules it contains. Finally, using three real-world metabolic networks as examples, we show that the degen-
erate solutions can fundamentally disagree on many, but not all, partition properties such as the composition of
the largest modules and the distribution of module sizes. These results imply that the output of any modularity
maximization procedure should be interpreted cautiously in scientific contexts. They also explain why many
heuristics are often successful at finding high-scoring partitions in practice and why different heuristics can
disagree on the modular structure of the same network. We conclude by discussing avenues for mitigating
some of these behaviors, such as combining information from many degenerate solutions or using generative
models.
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I. INTRODUCTION

Networks are a powerful tool for understanding the struc-
ture, dynamics, robustness and evolution of complex biologi-
cal, technological and social systems �1,2�. The automatic
detection of modular structures in networks—also called
communities �3� or compartments �4�, and conventionally
understood to be large subgraphs with high internal
densities—can provide a scalable way to identify function-
ally important or closely related classes of nodes from inter-
action data alone �5,6�.

The identification of modular structures has broad impli-
cations for many systems-level questions. For instance, it has
strong consequences for the behavior of dynamical processes
on networks �7,8�, and can provide a principled way to re-
duce or coarse-grain a system by dividing global heteroge-
neity into relatively homogeneous substructures. The search
for such modular substructures has been particularly intense
in molecular networks. This is, in part, because modules
have theoretical significance for molecular networks �9–11�:
they can correspond to functional clusters of genes or pro-
teins �12,13�, they may represent targets of natural selection
above the level of individual genes or proteins but below the
level of the whole organism, and they may provide evidence
of past evolutionary constraints or pressures �13,14�. Past
work along these lines has identified modular structures in
signaling, metabolic and protein-interaction systems
�14–17�, although some questions remain about their statis-

tical significance �18� and functional relevance �19�. Natu-
rally, many of these questions apply equally well to modules
in social and technological networks.

Empirical evidence for a modular organization is typically
derived using computer algorithms that automatically iden-
tify modules using network connectivity data, and among the
many techniques now available �see �5,6,20� for reviews�,
the method of modularity maximization �3� is by far the most
popular. Under this method, each decomposition or partition
of a network into k disjoint modules is given a score Q,
called the modularity or sometimes “Newman-Girvan modu-
larity”

Q = �
i=1

k � ei

m
− � di

2m
�2	 , �1�

where ei is the number of edges in module i, di is the total
degree of nodes in module i and m is the total number of
edges in the network. Intuitively, Q measures the difference
between the observed connectivity within modules and its
expected value for a random graph with the same degree
sequence �21�. Thus, a “good” partition—with Q closer to
unity—identifies groups with many more internal connec-
tions than expected at random; in contrast, a “bad”
partition—with Q closer to zero—identifies groups with no
more internal connections than we expect at random. This
reasonable formulation recasts the problem of identifying
modules as a problem of finding the so-called optimal parti-
tion, i.e., the partition that maximizes the modularity func-
tion Q.

Despite the popularity of modularity maximization, much
remains unknown about the quality and significance of its
output when applied to real-world networks with unknown
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modular structure. Most past work has focused on develop-
ing new ways of detecting modules, rather than on charac-
terizing their performance in practical situations. In general,
maximizing Q is known to be NP-hard �22�, but many heu-
ristic approaches—including greedy agglomeration �23–25�,
mathematical programming �26�, spectral methods �27,28�,
extremal optimization �29�, simulated annealing �14� and
sampling techniques �30,31�—perform well on simple syn-
thetic networks with strong modular structure �3� and they
often succeed at finding high-modularity partitions in prac-
tice. The apparent success of these methods has led to their
widespread adoption, and often �but not always �31,32�� the
implicit acceptance of several assumptions: �i� empirical net-
works with modular structure tend to exhibit a clear optimal
partition �18,30�, �ii� high-modularity partitions of an empiri-
cal network are structurally similar to this optimal partition
and �iii� the estimated Qmax can be meaningfully compared
across networks �33�.

Here, we present a broad characterization of the behavior
of modularity maximization in practical contexts. First, we
revisit and clarify the resolution limit phenomenon
�32,34–36�. We then show that the above assumptions do not
hold when modularity maximization is applied to networks
with modular or hierarchical structure. Using a combination
of analytic and numerical techniques, we show that the
modularity function Q exhibits extreme degeneracies such
that the globally maximum modularity partition is typically
hidden among an exponential number of structurally dissimi-
lar, high-modularity solutions. We then derive the asymptotic
behavior of Qmax in the limit of infinitely modular networks,
showing that it depends strongly on both the size of the
network and on the number of modules it contains. Finally,
using three real-world examples of metabolic networks, we
show that the degenerate solutions can fundamentally dis-
agree on many �but not all� partition properties such as the
composition of the largest identified modules and the distri-
bution of module sizes. This latter finding poses a serious
problem for scientific applications.

Together, these results significantly extend our under-
standing of the behavior and results of modularity maximi-
zation in practical contexts. When applied to networks with
modular structure, these results imply that any particular par-
tition of a real-world network found by maximizing modu-
larity should be interpreted cautiously. In principle, there is
nothing special about the modularity function with respect to
the degeneracy result and we expect that other module iden-
tification techniques will exhibit similar behavior. We con-
clude by discussing the prospects of ameliorating these is-
sues, for instance, by combining information across
degenerate solutions or using generative models.

II. RESOLUTION LIMIT REVISITED

Recently, Fortunato and Barthélemy showed that modu-
larity admits an implicit resolution limit �32�, in which the
maximum modularity partition can fail to resolve modules
smaller than a size, or weight �36�, that depends on the total
weight of edges in the network m. This violates the notion
that the quality of a module should be a local property. As a

result, intuitively modular structures, such as cliques of mod-
erate size, can be hidden within large agglomerations that
yield a higher modularity score, and the peak of the modu-
larity function �the optimal partition� may not coincide with
the partition that correctly identifies these intuitive modules
�the intuitive partition�.

This behavior is sometimes described as an implicit pref-
erence on edge weight within identified modules. But as we
show here, the resolution limit is better understood as a con-
sequence of assuming that intermodule connections follow a
random graph model, which induces an explicit preference
on the weight of between-module connections. Thus, it
should not be surprising that other partition score functions
that make similar random-graph assumptions about inter-
module edges, such as Potts-models �34� and several
likelihood-based �35� techniques, also exhibit resolution lim-
its.

To begin, we consider the change in modularity �Q ob-
tained by merging two modules in the intuitive partition. If
this change is positive, then the modularity function will fail
to resolve the intuitive modules, since a higher modularity
score is achieved by merging them. Let ei and ej be the
number of edges within the modules and eij be the number of
edges between them. The change in Q for merging them �32�
is

�Qij =
eij

m
− 2� di

2m
�� dj

2m
� , �2�

which is positive whenever

eij �
didj

2m
. �3�

That is, independent of the modules’ internal structure, a
merger is beneficial whenever the observed number of inter-
module edges eij exceeds the number expected for a random
graph with the same degree sequence 
eij�=didj /2m �6�. This
behavior is particularly problematic for large unweighted
networks because modularity tends to expect 
eij��1 while
the minimum intermodule weight is eij =1, i.e., a single edge.
On the other hand, as we show below, weighted networks
whose intermodule connectivity approximates the null ex-
pectation can escape the resolution limit completely.

A. Two examples

To illustrate the subtlety of this behavior, we consider two
versions of the ring network model �32�, in which k cliques,
each containing c nodes, are connected by single edges to
form a ring �Fig. 1�. The intuitive partition here places each
clique in a group by itself and, at least for small values of k,
this is also the optimal partition. The penalty for merging a
pair of adjacent cliques is given by

�Q =
1

k��c

2
� + 1	

− 2k−2, �4�

which is positive whenever
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k � 2�c

2
� + 2. �5�

Thus, there is some number of cliques k� above which the
modularity function gives a higher score to a partition that
merges pairs of adjacent cliques.

�We note that this argument generalizes to merging � ad-
jacent cliques: an �-merged partition has greater modularity
than an ��−1�-merged partition whenever

k � ��� − 1���c

2
� + 1	 . �6�

Thus, the resolution limit is multiscale and for large con-
nected networks, intuitively modular structures can be hid-
den within very large agglomerations.�

The resolution limit appears in the ring network because
each module is connected to its nearest neighbors with a
constant weight eij=O�1�, while the null model expects this
weight to decrease with k. Thus, there must be some size of
the network, i.e., a value of k, above which even a single
unweighted edge between two cliques will appear “surpris-
ing” under the null model, and modularity will favor merging
these minimally connected modules.

Some kinds of weighted networks, however, do not ex-
hibit a resolution limit. For instance, consider a weighted
variation of the ring network, composed of k cliques, each
containing c nodes and each with internal weight ei= � c

2 �.
Now, instead of connecting each clique to two others to form
a ring, we take the same total weight and spread it evenly
across connections to every other clique. That is, we com-
pletely connect the cliques using edges with weight
eij =2 / �k−1�. Notably, the total weight of a module here is
exactly the same as in the example above, that is,
di= � c

2 �+2, and the total weight in the network grows with k.
But, the penalty for merging a pair of connected cliques in
this network is given by

�Q =
2

k�k − 1���c

2
� + 1	

− 2k−2, �7�

which is negative for all k�2. Thus, it is never beneficial to
merge a pair of cliques and there is no resolution limit in this
network.

Surprisingly, despite the fact that the internal and external
module weights in both of these toy networks are exactly the
same, one exhibits a resolution limit while the other does

not. The crucial difference between these examples is that in
one the weight of an intermodule connection is independent
of the size of the network, while in the other, it decreases.
This dependence allows the observed intermodule connectiv-
ity between any pair of modules to closely follow the con-
nectivity expected under the null model, and to avoid the
condition given by Eq. �3� for merging two modules, even
though the total weight in the network grows without bound.

Thus, we see that the resolution limit is better explained
as a systematic deviation between the intermodule connec-
tivity eij and the connectivity expected under the random-
graph null model 
eij�=didi /2m, than as an implicit prefer-
ence on the weight of edges within modules.

B. A broader perspective

For unweighted networks, and for many weighted ones,
Fortunato and Barthélemy correctly argue that the resolution
limit poses a very real problem for the direct interpretation of
the optimal partition’s composition.

On the other hand, since the intuitive partition is always a
refinement of the optimal partition, cleverly designed algo-
rithms may be able to circumvent the resolution limit in
some cases. For instance, divisive algorithms that recursively
partition large modules �27,28,37� while progressively low-
ering the resolution limit may be able to find the appropriate
refinement �although some problems can remain if the divi-
sions are always binary �28��. Alternatively, the history of
merges within agglomerative algorithms may provide a way
to identify the intuitive modules that were merged to obtain
the optimal partition �24,36�. Multiscale modularity-based
methods �38–40� allow a researcher to specify a target reso-
lution limit and identify modules on that scale, but it is typi-
cally not clear how to choose the “correct” target resolution a
priori. Finally, Berry et al. �36� recently showed that in some
situations, the resolution limit can be circumvented with a
clever edge-weighting scheme. These possibilities are en-
couraging, but most have yet to be fully characterized.

More generally, this discussion of intuitive versus optimal
partitions ignores two subtle problems in the general task of
identifying modules from connectivity data alone. First, there
is the choice of a random graph as the null model, which, as
we showed above, plays a critical role in generating reso-
lution limits. If we could instead choose a null model with
more realistic assumptions about intermodule connectivity,
unintuitive merges would become less likely. For instance,
the null model assumes that an edge emerging from some
module can, in principle, connect to any node in the network,
but for real-world systems this assumption is rarely accurate
�a point also recently made by Fortunato �6��.

A related issue is that the null model is unforgiving of
sampling fluctuations, even those naturally generated by the
null model itself. That is, the null model is a mean-field
assumption, while actual networks—even those drawn from
the null model—naturally deviate from these expected val-
ues. Such fluctuations are ultimately responsible for the non-
zero maximum modularity scores observed in homogeneous
random graphs �41�. This issue is more severe in sparse net-
works, where the expected inter-module connectivity will

FIG. 1. �Color online� A schematic of a ring network with
k=24 cliques of c=5 nodes each �shaded circles� joined by single
links to form a ring. The intuitive partition, which places individual
cliques on their own, has modularity Q1=0.8674, while the optimal
partition �the two-clique tiles�, which merges adjacent cliques, has
slightly larger modularity Q2=0.8712.
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tend to be less than one edge, while sampling alone will
generate a non-trivial number of such connections. Modular-
ity will see these connections as “surprising” and may mis-
take them for structure internal to a module. The Berry et al.
�36� edge reweighting approach can serve to dampen this
effect by reducing the relative weight of intermodule edges
so that they appear closer to what we expect under the null
model. A more tolerant definition of modularity might only
merge groups of nodes if their observed interconnectivity
were statistically significant relative to the null model �an
approach hinted at by �18,31,37,42��.

Second, and more fundamentally, in order to distinguish
an optimal partition from an intuitive partition, we must as-
sume an external definition of an “intuitive” module. The
fact that there exist instances where modularity maximiza-
tion produces counter-intuitive results, i.e., results that clash
with our external definition, simply highlights the difficulty
of constructing a mathematical definition of a module that
always agrees with our intuition. Indeed, it is unknown
whether our intuition is even internally consistent.

Precisely the same difficulty lies at the heart of a decades
long and ongoing debate over how best to identify “clusters”
in spatial data, which are conventionally understood to be
nontrivial groups of points with high internal densities. For
instance, Kleinberg recently proved that no mathematical
definition of a spatial cluster can simultaneously satisfy three
intuitive requirements �43�, while Ackerman and Ben-David,
taking a different approach, arrived at a contradictory con-
clusion �44�. For identifying modules in complex networks,
the debate has only just begun and it remains to be seen
whether “impossibility” results from spatial clustering also
apply to network clustering.

III. EXTREME DEGENERACY AMONG HIGH-
MODULARITY PARTITIONS

If we take the mathematically principled stance and ac-
cept modularity’s definition of a good module, i.e., we do not
assume any external notions, the modularity function still
admits a subtle and problematic behavior for practical opti-
mization techniques: even when it is not beneficial to merge
two modules, i.e., when �Qij �0, the penalty for doing so
can be very small. Further, as the number of modular struc-
tures increases, the number of ways to combine them in these
suboptimal ways grows exponentially. Together, these prop-
erties lead to extreme degeneracies in the modularity func-
tion, which are problematic both for finding the maximum
modularity partition and for interpreting the structure of any
particular high-modularity partition. Thus, we have a highly
counter-intuitive situation: as a network becomes more
modular, the globally optimal partition becomes harder to
find among the growing number of suboptimal, but competi-
tive, alternatives.

A. Modular networks

To make this argument quantitative, consider a network
composed of k sparsely interconnected groups of nodes with
roughly equal densities di�2m /k. Even when m is small

enough that the intuitive partition coincides with the optimal
partition �i.e., when there is no clash between our intuition
and the definition of modularity�, Eq. �2� shows that the
change in modularity for merging a pair of these groups is
bounded below by �Qij =−2k−2. For a moderate choice of
k=20, this change is at most �Qij =−0.005, which implies
that these alternative partitions have modularities very close
to Qmax. As the number of groups k increases, this penalty
tends toward zero, and it becomes increasingly difficult for
the modularity function to distinguish between the optimal
partition and these suboptimal alternatives.

If there were only a few competitive alternatives, this de-
generacy problem might be manageable. Unfortunately, their
number grows combinatorially with the number of modular
structures k. Its precise behavior depends on the inter-module
connectivity, but is bounded below by 2k−1 and above by the
kth Bell number.

The lower bound can be seen by considering the con-
nected modular network with the fewest inter-module edges.
This is given by the “string” network, which is a ring net-
work with one intermodule edge removed. In this case, the
number of suboptima is equal to the number of ways we can
cut intermodule edges to divide the k groups into connected
components. Because there are k−1 such edges, each of
which can be either cut or not cut, the number of partitions
we can obtain this way is exactly 2k−1.

The upper bound comes from a network where each of the
k groups is connected to every other group, and the number
of suboptima here is exactly equal to the number of ways to
partition the k groups into k� groups of groups, for all
choices of k�. This is given by the kth Bell number, which
grows faster than exponentially. The intermediate levels of
degeneracy correspond to networks with varying degrees of
intermodule connectivity: sparse modular networks will be
closer to the lower bound, while dense modular networks
will be closer to the upper bound.

At face value, this finding seems to contradict that of
Massen and Doye �30�, who argued that empirical networks
with modular structure tend to exhibit a strong global peak
around the optimal partition. This is a red herring. Recall that
the total number of partitions of n nodes grows like the nth
Bell number, while the fraction of these that correspond to
degenerate solutions is vanishingly small, since k�n. Thus,
the modularity function is strongly peaked in a relative
sense: even a superexponential number of degenerate, high-
modularity solutions can still be a vanishingly small fraction
of the enormous number of partitions in general.

B. Hierarchical networks

In addition to modular structure, many networks exhibit
hierarchical structure, in which their nodes divide into
groups that further subdivide into groups of groups, etc. over
multiple scales �14,31,45–47�, and where groups that are
closer together in this hierarchy tend to be more densely
interconnected. Here, we show that such networks exhibit at
least as many degenerate solutions as simple modular net-
works, and that the modularity scores of alternative solutions
can be even closer.
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Suppose that the optimal partition of a hierarchical net-
work contains two modules i and j, each of which is com-
posed of exactly two subgroups so that i= a ,b� and
j= c ,d�. Let us first split i and j into their constituent sub-
groups a ,b ,c ,d� and then merge the opposite pairs of sub-
groups to obtain the suboptimal partition i�= a ,c� and
j�= b ,d�. From Eq. �2�, the change in modularity Q for this
operation is exactly

�Q = ��Qac + �Qbd� − ��Qab + �Qcd�

=
�eac + ebd� − �eab + ecd�

m
− 2�da − dd

2m
��dc − db

2m
� .

�8�

Unlike Eq. �2�, the size of the penalty now depends only on
differences in connectivities, rather than on their absolute
values, and will thus tend to be much smaller than the pen-
alty discussed in the previous section.

If the network’s hierarchical structure is relatively bal-
anced �i.e., submodules at the same level in the hierarchy
have similar degree d� then Eq. �8� will be dominated by its
first term, whose size depends only on the differences in the
pairwise connectivities of the submodules. This is very small
both when the groups i and j are close to each other in the
hierarchy, e.g., are siblings or cousins, and thus have similar
intermodule and intramodule connectivities, and when i and
j are relatively low in the hierarchy, and thus have few con-
nections to begin with.

Furthermore, each level of a hierarchy presents its own set
of modular structures that can be merged, either within the
same level or between different levels of the hierarchy. The
number of ways these structures can be combined depends
on their particular hierarchical organization and the number
of connections between distantly related groups. Generally,
however, it follows the same bounds we showed above for a
non-hierarchical network, i.e., at least 2k−1 and no more than
the kth Bell number, when there are k modular structures at
the lowest level of the hierarchy.

We also note that hierarchical problems are not, in fact,
limited to hierarchical networks. The resolution limit phe-
nomenon, which tends to produce agglomerations with
modular substructure, creates effective hierarchical structure
even in a nonhierarchical network and, thus, can induce
hierarchy-style degeneracies in the modularity function.

In both cases considered above, the existence of extreme
degeneracies in the modularity function does not depend on
the detailed structure of the particular network or on any
external notion of a “true” module. Instead, these solutions
exist whenever a network is composed of many groups of
nodes with relatively few intergroup connections. In a sense,
these groups constitute the “building blocks” used to con-
struct the high-modularity partitions.

Fundamentally, these degeneracies arise because the
modularity function does not strongly penalize partitions that
combine such groups and the degeneracies are legion be-
cause there are at least an exponential number of such com-
binations. As a consequence, the modularity function is not
strongly peaked around the optimal partition—in physics
parlance, the modularity function is glassy—in precisely the

case that we would like modularity maximization to perform
best: on modular networks.

We note that similar degeneracies are likely to occur in
other kinds of module-identification quality functions, in-
cluding some likelihood-based functions �48� and they per-
sist under directed, weighted, bipartite and multiscale gener-
alizations of modularity. For the � generalization of Q
introduced by Reichardt and Bornholdt �38�, choosing
��1 increases the severity of the degeneracy problem, by
reducing the penalty for merging modules, while choosing
��1 reduces it somewhat, by increasing the penalty. For any
fixed �, however, there exist many networks that will exhibit
severe degeneracies, and, moreover, it remains unclear how
to identify the “correct” value of � without resorting again to
an external definition of a “true” module. Similar issues ap-
ply to other parametric generalizations of modularity �39,40�.
For most weighted networks, the degeneracy problem will
tend to be stronger because weights effectively reduce the
penalty for merging some modules. Also, many weighted
networks are dense and, as we showed above, these exhibit
many more degenerate solutions than sparse networks �even
if they may not necessarily exhibit a resolution limit; see
Sec. II�.

Of course, an optimal partition always exists, even if it
may be almost impossible to find in practice. But the scien-
tific value of the optimum does seem somewhat diminished
by the enormous number of structurally diverse alternatives
that are only slightly “worse” from the perspective of their
modularity scores. That is, without external information, it
becomes unclear which particular partition, within the enor-
mous number of roughly equally good ones, is more scien-
tifically meaningful �26�. And, requiring such external infor-
mation defeats the purpose of identifying modules
automatically from connectivity data alone.

IV. LIMITING BEHAVIOR OF Qmax FOR MODULAR
NETWORKS

In addition to the location of the peak of the modularity
function and its surrounding structure, another important
question is the expected height of the peak. In this section we
show that, in the asymptotic limit of an increasingly modular
network—i.e., as we add more modules to the network—the
height of the modularity function converges to Qmax=1. This
analysis fills an important gap in our understanding of the
modularity function’s behavior in practical contexts, as pre-
viously only unrealistic cases such as lattices, trees and
Erdös-Rényi random graphs �41,49� have been considered.
Notably, these results serve to explain why large values of
Qmax are often found for very large real-world networks �25�.

Consider a sparse network with n nodes, m=O�n� edges
and an optimal partition that contains k modules. Because
modularity is a summation of contributions from individual
terms, we may rewrite Eq. �1� for the optimal partition as

Qmax = �
i=1

k � 
e�
m

− �� di

2m
�2�	

= �
i=1

k � 
e�
m

− � 
d�
2m

�2

− Var� di

2m
�	 , �9�

where 
e�= 1
k �iei is the average number of edges within an
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optimal module, Var� . � is the variance function and

d�= 1

k �idi is the average degree of an optimal module.
Now, imagine a process by which we connect new modu-

lar subgraphs of some characteristic size 
e�=O�1� to the
network, i.e., we assume that the average size of a module
does not increase as the network grows �but see below�, and
consider the asymptotic dependence of Qmax in the limit of
this infinitely modular network.

It will be convenient to rewrite the average degree of a
module as


d� = 2
e� + 
eout� , �10�

where 
eout�= 1
k �iei

out denotes the average number of outgo-
ing edges in each module. Because modules do not grow
with the size of the network, the number of modules k is
O�n�, and hence the average out-degree 
eout� must be O�1�
to ensure that the network remains sparse. This implies that
the average degree 
d� is also O�1�. Finally, because
Var�di /2m�→0 in the limit, we may ignore the last term in
Eq. �9�.

Combining the expression for 
d� �Eq. �10�� with the ex-
pression for the maximum modularity �Eq. �9��, we have

Qmax = �
i=1

k � 
e�
m

− �2
e� + 
eout�
2m

�2	 . �11�

Rewriting the number of edges in the network m as a func-
tion of the connectivity of the optimal modules

m =
1

2
k
d� =

k

2
�2
e� + 
eout�� ,

and carrying out the summation in Eq. �11�, we see that

Qmax =

e�


e� + 
eout�/2
−

1

k
=

1

1 +

eout�
2
e�

−
1

k
. �12�

Thus, in the limit of k→�, Qmax approaches some constant
less than 1, which depends only on the relative proportion of
internal to external edges in each module. However, this
analysis is incomplete in a crucial way: it ignores the impact
of the resolution limit described in Sec. II, which can cause
the average size of a module in the optimal partition to grow
with the size of the network �32,34–36�.

When the resolution limit causes two groups of nodes to
be merged, the links joining them become internal, which in
the limit causes the average out-degree of a module in the
optimal partition to be asymptotically dominated by its aver-
age internal density, i.e., 
eout�=o�
e��. This, in turn, implies
that 
eout� / 
e�→0 as k→�. Accounting for this resolution-
limit induced agglomeration, we now see that the first term
in Eq. �12� approaches 1 while the second term approaches
0, implying that Qmax→1 as k→�. �Recall, however, that
this last step does not hold for all weighted networks: con-
sider a limiting process in which each module connects to
O�k� other modules with total weight o�k�, e.g., the collec-
tion of k cliques connected to each other by edges of weight

2 / �k−1� from Sec. II. The resolution is not present in such a
network and, hence, Qmax merely approaches the value given
in Eq. �12�.�

Thus, just as the severity of the degeneracy problem de-
pends strongly on the number of modular structures in the
network, so too does the height of the modularity function.
Further, the number of these structures k is limited mainly by
the size of the network, since there cannot be more modular
structures than nodes in the network. In practical contexts,
variations in n are very likely to induce variations in Qmax
and increasing n �or k� will generally tend to increase Qmax.
If the intention is to compare modularity scores across net-
works, these effects must be accounted for in order to ensure
a fair comparison.

Of course, the precise dependence of Qmax on n and k
depends on the particular network topology and how it
changes as n or k increases. For instance, in Appendix A, we
derive the exact dependence for the ring network and calcu-
late precisely how many of its degenerate solutions lie within
10% of Qmax. Because of this dependence, an estimate of
Qmax for any empirical network should not typically be in-
terpreted without a null expectation based on networks with
a similar number of modules. For instance, detailed values of
Q should probably not be compared across different net-
works, as in a regression of modularity Q versus network
size n �33�.

Finally, we point out that this dependence of Qmax on n
and k makes intuitive sense given that the null model against
which the internal edge fractions of the modules are scored
�the second term in Eq. �1�� is a random graph with the same
degree sequence �see Sec. II�. That is, as the number of mod-
ules increases, it is increasingly unlikely under the null
model that any edges fall within a particular module given
the huge number of possible connections to other modules.
In this sense, it is not at all surprising that extremely high-
modularity values have been found for extremely large real-
world networks. For instance, Blondel et al. �25� estimated
Qmax�0.984 for one Web graph with 118 million nodes and
Qmax�0.979 for a different Web graph with 39 million
nodes. Such high values may not indicate that they are par-
ticularly modular, but instead that they are simply very dif-
ferent from a random graph with the same degree sequence.

V. MAPPING THE MODULARITY LANDSCAPE

To get a more intuitive handle on the precise structure of
the modularity function, we now describe a numerical tech-
nique for reconstructing a locally accurate, low-dimensional
visualization of it. We then apply this technique to instances
of synthetic modular or hierarchical networks. In the next
section, we apply it to three real-world networks and show
that the high-modularity partitions of empirical networks can
disagree strongly on many, but not all, partition properties.

A. Reconstruction technique

Our focus here is on the modularity function’s structure in
the vicinity of the degenerate high-modularity partitions
identified in Sec. III. To do this, we sample partitions using a
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simulated annealing �SA� algorithm. Each SA sample was
started from a random initial partition and stopped either at a
randomly chosen step �75% of runs� or at a local optimum
�25% of runs�. This mixture of stopping points ensures that
our sample contains both a large number of local optima as
well as a sampling of sub-optimal partitions in their vicinity.
Complete details of the sampling approach are given in Ap-
pendix B.

To reconstruct and visualize the structure implied by these
sampled partitions, we embed them as points in a two-
dimensional Euclidean space such that we largely preserve
their pairwise distances. The distance between partitions is
measured by one popular distance metric for partitions,
called the variation of information �VI� �50� and defined as
follows. Given partitions C and C�, the variation of informa-
tion between them is defined as

VI�C,C�� = H�C,C�� − I�C;C�� , �13�

where H�. ; .� is the joint entropy �see Eq. �C3�� and I�. ; .� is
the mutual information �see Eq. �C4�� between the two par-
titions. Additional details are given in Appendix C. We note
that using other measures of partition distance, such as one
based on the Jaccard coefficient, yields similar results �see
Fig. 9 in Appendix C�.

The embedding portion of our reconstruction technique
seeks an assignment of partitions Ci� to coordinates �xi ,yi��
such that the pairwise distances between partitions are
largely the same as the pairwise distances between embedded
points. Only the relative positions of points in the embedded
space are significant; their precise locations are meaningless.
Then, by assigning each embedded point a value in a third
dimension equal to the modularity score Qi of the corre-
sponding partition, we can directly visualize the structure of
the sampled modularity function.

Because we are interested in the function’s degeneracies,
we prefer an assignment that errs on the side of being more
smooth, i.e., less rugged, in the projected space than in the
original partition space. Methods such as principal compo-
nent analysis use a linear function to measure the quality of
the embedding, which can cause some local structure to be
lost or distorted when projecting from non-Euclidean spaces
such as the partition space. Instead, we use a technique called
curvilinear component analysis �CCA� �51�, which preserves
local distances at the expense of some distortion at larger
distances. Thus, our reconstructed modularity landscapes are
appropriately conservative, sometimes reducing the apparent
ruggedness of the reconstructed landscape, but never creating
ruggedness where it does not exist in the first place.

Additional details of the CCA technique are given in Ap-
pendix D. For completeness, we note that several other ap-
proaches to mapping specific features of the modularity land-
scape are described in �31,52,53�.

B. Reconstructed modularity functions for modular and
hierarchical networks

Using a ring network with k=24 and c=5 �Fig. 1�, Fig. 2
shows the modularity function reconstructed from nearly
1000 sampled partitions. Examining these in detail, we see

that every low-modularity partition divides many cliques
across different groups, which leads to low values of Q. In
contrast, the high-modularity partitions are composed of
various groupings of the cliques, as predicted in Sec. III. In
the embedded modularity function, these high-modularity
partitions tend to cluster together, forming a distinct “pla-
teau” region. Within this region, the function shows compli-
cated degeneracies and no clear maximum �Fig. 2, inset�.

Now turning to the case of a hierarchically structured net-
work, we use a simplified version of the recently introduced
hierarchical random graph �HRG� model �47�, in which we
organize n=256 nodes into nested modules using a balanced
binary tree structure—so that submodules at the same level
in the hierarchy have similar sizes—and an assortative con-
nectivity function—so that submodules become more inter-
nally dense as we descend the hierarchy from large to small
groups. Appendix E gives the precise details of the HRG
model we use and analytically derives its optimal partition.

From this model, we drew 100 network instances and
combined sampling results from this ensemble to smooth out
deviations caused by fluctuations in the random graph struc-
ture �30,41�. As a consequence, the reconstructed modularity
function is smoother than it would be for any particular in-
stance and shows only the structure induced by the hierarchi-
cal organization of the network. Figure 3 shows the recon-
structed modularity function for nearly 1200 sampled
partitions. Again examining these partitions in detail, we find
that nearly all of the high-modularity partitions in the “pla-
teau” region mix submodules from different levels of the
hierarchy and often fail to resolve distinct branches, as pre-
dicted in Sec. III. Like the ring network �Fig. 2�, the high-

FIG. 2. �Color online� The modularity function of a ring net-
work �k=24 and c=5�, reconstructed from 997 sampled partitions
�circles�, showing a prominent high-modularity plateau. The verti-
cal axis gives the modularity Q; the x and y axes are the embedding
dimensions. �These dimensions are complicated functions of the
original partition space and thus their precise scale is not relevant;
see Appendix D�. Note that the structure within the plateau �inset� is
highly irregular, illustrating the severe degeneracies of the modular-
ity function.
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modularity region in this case is extremely rugged, with
many peaks and valleys and no clear global optimum �Fig. 3,
inset�.

As mentioned above, the CCA embedding technique only
guarantees a lower bound on the ruggedness of the recon-
structed modularity function. Thus, what appear to be local
minima in the embedding are actually quite likely to be local
maxima themselves and the true ruggedness is almost surely
more extreme than it appears in these visualizations.

VI. STRUCTURAL DIVERSITY AMONG
HIGH-MODULARITY PARTITIONS

Although our analytic arguments are entirely general, our
numerical results have focused on specific synthetic net-
works derived from models of modular and hierarchical net-
works. These models may not be representative of the net-
works found in the real world, since they lack certain
properties commonly observed in real-world networks �to
name a few simple properties: unequal module sizes and
heavy-tailed degree distributions �54��. In this section, we
apply our reconstruction technique to several real-world ex-
amples of complex metabolic networks and consider the de-
gree to which different high-modularity partitions agree on
the large-scale modular structure.

Metabolic networks are an interesting test case for this
analysis because the answers to many questions in systems
biology depend on our ability to accurately characterize their
modular and hierarchical structure �9–11� and modularity
maximization has been used extensively in their analysis. We
emphasize, however, that our results likely also hold for
other types of networks, such as social or technological net-
works, since the ruggedness of the modularity landscape de-
pends only on the presence of modular or hierarchical struc-
ture.

Figure 4 shows the reconstructed modularity function for
the largest connected component in the metabolic network of
the spirochaete Treponema pallidum �n=482, m=1223� and
Fig. 13 in Appendix F shows the functions for the mycoplas-
matales Mycoplasma pneumoniae and Ureaplasma parvum
�12�. All three modularity functions are similar to those of
the modular and hierarchical model networks shown in Figs.
2 and 3, exhibiting a broad and rugged region of high-
modularity partitions with no clear global maximum.

A. Large-scale similarity

From a pragmatic perspective, the multiplicity of high-
modularity partitions is more troublesome if they disagree on
the large-scale modular structure of the network. In contrast,
if high-modularity partitions disagree mainly on the compo-
sition of the smallest few modules, but agree on the compo-
sition of the larger ones, modularity maximization can pro-
vide useful information about a network’s large-scale
modular structure in spite of the degeneracies.

Using our sampled partitions, a direct and straightforward
test of this possibility is the following. For each locally op-
timal partition, we set aside the k� largest identified modules
and then merge the remaining smaller modules into a single
group. If most of the differences between local optima are in
the composition of the smaller modules, the mean pairwise
distance between the reduced partitions will vanish as we
merge more of these small modules into a single group.
However, if a significant fraction of the original mean pair-
wise distance remains even when almost all of the smaller
modules have been merged, i.e., when k� is small, then we
have significant evidence that the high-modularity partitions
fundamentally disagree on the networks’ large-scale modular
structure.

Figure 5 shows the results of this test using the sampled

FIG. 3. �Color online� The modularity function of a hierarchical
random graph model �47�, with n=256 nodes arranged in a bal-
anced hierarchy with assortative modules �see Appendix E�, recon-
structed from 1199 sampled partitions �circles�, and its rugged high-
modularity region �inset�.

FIG. 4. �Color online� The modularity function for the metabolic
network of the spirochaete Treponema pallidum with n=482 nodes
�the largest component� and 1199 sampled partitions, showing
qualitatively the same structure as we observed for hierarchical net-
works. The inset shows the rugged high-modularity region.
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partitions of the T. pallidum metabolic network, for 9�k�
�1 �with similar results for the other metabolic networks;
see Fig. 14 in Appendix F�. For comparison, we also show
results for a random graph with the same degree sequence,
which has no real modular structure. Notably, the mean pair-
wise distance among the original empirical partitions de-
creases very little �0.05%� when we retain only the k�=9
largest groups; in contrast, the random graph exhibits a much
larger change �13%�.

Counter-intuitively, this implies that the high-modularity
partitions of the random graph exhibit greater agreement on
the composition of the largest few modules, i.e., less struc-
tural diversity, than do the high-modularity partitions of the
empirical network. Additionally, the mean pairwise distance
for the T. pallidum partitions only falls below 50% of its
original value when we merge all but the k�=2 largest
groups. That is, almost half the variation of information be-
tween high-modularity partitions is explained by differences
in the composition of their two largest modules, with the
remainder being caused by disagreements on the composi-
tion of all other modules.

Thus, partitions that are “close” in terms of their modu-
larity scores can be very far apart in terms of their partition
structures and most of the differences come from disagree-
ments on the composition of the largest identified modules.
This suggests that the degeneracies in the modularity func-
tion really do pose a problem for interpreting the structure of
any particular partition and that a high-modularity score pro-
vides very little information about the underlying modular
structure.

B. Structural summary statistics

For some research questions, however, the precise com-
position of the modules is not as important as the value of

some statistical summary of the partition’s structure. Thus,
an important question is whether high-modularity partitions
tend to agree on the values of simple summary statistics,
even if they disagree on the precise partition structure. Natu-
rally, the particular statistical quantity will depend on the
research question being asked and the safest approach is to
directly test whether the quantity measured on one high-
modularity partition is representative of its distribution over
many high-modularity partitions. Here, we briefly study two
such summary statistics: the mean module density and the
distribution of module sizes. We note, however, that tests of
reliability like these may not generalize to larger networks,
as the number of degenerate solutions, and thus their poten-
tial structural diversity, grows rapidly with the size of the
network tested �see Sec. III�.

Using the same high-modularity partitions of the T. palli-
dum metabolic network, along with a second set of high-
modularity partitions derived using the Louvain method �25�,
we compute the average module density 
ei /ni� and the dis-
tribution of module sizes p�ni� for each partition. The former
statistic can be immediately compared between partitions; to
compare the latter, we compute pairwise Kolmogorov-
Smirnov �KS� �55� distances between the distributions. If the
statistic’s distribution is tightly concentrated, then any par-
ticular high-modularity partition can be assumed structurally
representative, under that summary statistic, of the other
high-modularity partitions.

Figure 6 shows the resulting distributions for our two
simple measures. In both cases, the distributions for the Lou-
vain partitions are indeed relatively tightly concentrated, il-
lustrated by a large increase of the cumulative distribution
function over a small range in the x variable. This suggests
that the Louvain method tends to find partitions with rela-
tively similar module densities and module sizes. In contrast,
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FIG. 5. �Color online� The fraction remaining of the mean pair-
wise distance between sampled high-modularity partitions when all
but the k� largest groups in each partition are merged into a single
group, for the T. pallidum network and for a random graph with the
same degree sequence. �Error bars indicate one standard deviation;
inset shows the distribution of the number of groups in a partition.�
In both cases, the fraction converges slowly on 0 as more modules
are merged, indicating that the majority of the structural diversity
captured by these partitions is driven by significant differences in
the composition of the largest few identified groups. This behavior
is especially true for the empirical network.
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FIG. 6. �Color online� The cumulative distribution functions for
the �a� mean module density 
ei /ni� and �b� Kolmogorov-Smirnov
distance d between module size distributions p�ni�, among sampled
high-modularity partitions of the T. pallidum network. �A dot indi-
cates the distributional mean.� In both cases, we show the distribu-
tions for partitions derived using simulated annealing and using the
Louvain method. In both cases, the SA partitions exhibit a much
less tightly peaked distribution than those derived using the Lou-
vain method, indicating that high-modularity partitions exhibit non-
trivial structural diversity, even under these summary statistics.
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however, the SA partitions exhibit much more variance under
both measures. This indicates that the SA method more ac-
curately samples the full structural diversity of the high-
modularity partitions than does the Louvain method. �To be
fair, the Louvain method was not designed to find represen-
tative high-modularity partitions, but rather to be very fast at
finding some high-modularity partition.�

On this network, both methods tend to produce partitions
with similar mean module densities: the estimated means are

ei /ni�=1.421�0.013 �mean�standard error� for SA versus
1.520�0.005 for Louvain. The Louvain method, however,
underestimates this statistic’s standard deviation by about a
factor of 2 relative to the SA method �	=0.223 for SA versus
	=0.095 for Louvain�.

Thus, these results support our conclusion above: high-
modularity partitions can exhibit non-trivial structural diver-
sity, even under simple structural measures such as the mean
module density and the distribution of module sizes. Of these
two, the mean module density is more reliably representa-
tive, although even it exhibits nontrivial variance. In con-
trast, the distribution of module sizes exhibits a great deal of
variation. Thus, we generally recommend a cautious ap-
proach when interpreting the structure of one or a few high-
modularity partitions, as their structural characteristics may
not be representative of alternative high-modularity solu-
tions.

VII. DISCUSSION

To summarize, the modularity function Q poses three dis-
tinct problems in scientific applications:

�1� The optimal partition may not coincide with the most
intuitive partition �the resolution limit problem �32,34–36��,
an effect driven primarily by the consequences of assuming
that intermodule connectivity follows a random graph model
�see Sec. II�.

�2� There are typically an exponential number of structur-
ally diverse alternative partitions with modularities very
close to the optimum �the degeneracy problem�. This prob-
lem is most severe when applied to networks with modular
structure; it occurs for weighted, directed, bipartite and mul-
tiscale generalizations of modularity; and it likely exists in
many of the less popular partition score functions for module
identification �see Secs. III, V, and VI�.

�3� The maximum modularity score Qmax depends on the
size of the network n and on number of modules k it contains
�see Sec. IV�.

To be practically useful, we believe that future method-
ological work on module identification in complex networks
must, in particular, include some effort to address the exis-
tence of degenerate solutions and the problems they pose for
interpreting the results of the procedure.

The discovery of extreme degeneracies in the modularity
function also provides an answer to a nagging question in the
literature: given that maximizing modularity is NP-hard in
general �22�, why do so many different heuristics perform so
well at maximizing it in practice? And further, why do dif-
ferent methods often return different partitions for the same
network? The answer is that the exponential number of high-

modularity solutions makes it easy to find some kind of high-
scoring partition, but, simultaneously, their enormous num-
ber obscures the true location of the optimal partition.

In this light, it is unsurprising that different heuristics of-
ten yield different solutions for the same input network, par-
ticularly for very large networks. Different heuristics will
naturally sample or target distinct subsets of the high-
modularity partitions due to their different approaches to
searching the partition space �for instance, see Fig. 7, in Ap-
pendix B�. This implies that the results of deterministic al-
gorithms, such as greedy optimization �23–25� or spectral
partitioning �27,28�, which return a unique partition for a
given network, should be treated with particular caution,
since this behavior tends to obscure the magnitude of the
degeneracy problem and the wide range alternative solutions.

The structural diversity of high-modularity partitions
�Figs. 5 and 6� suggests that a cautious stance is typically
appropriate when applying modularity maximization to em-
pirical data. Unless a particular optimization or sampling ap-
proach can be shown to reliably find representative high-
modularity partitions, the precise structure of any high-
modularity partition or statistical measures of its structure
should not be completely trusted.

Finally, even the estimated modularity score Qmax, which
may be “significant” relative to a simple random graph �41�,
should be treated with an ounce of caution as it is almost
always a lower bound on the maximum modularity �but see
�26�� and its accuracy necessarily depends on the particular
algorithm and network under consideration. As a result, an
estimate of Qmax should not be mistaken for a network prop-
erty that can be fairly compared across networks: as we
showed in Sec. IV, Qmax depends on the number of module-
like structures in the network and on their interconnectivity,
both of which are limited by the network’s size. Thus, varia-
tion in size can induce variation in the maximum modularity
value and a fair comparison between different networks must
control for this correlated behavior.

Although the degeneracy problem presents serious issues
for the use of modularity maximization in scientific contexts,
certain kinds of sophisticated approaches may be able to cir-
cumvent or mitigate some of its consequences. For example,
Sales-Pardo et al. �31� recently proposed combining infor-
mation from many distinct high-modularity partitions to
identify the basic modular structures that give rise to the
degenerate solutions. To be useful, however, the high-
modularity partitions should be sampled in an unbiased and
relatively complete way, e.g., by using a Markov chain
Monte Carlo algorithm �30�. This type of approach may also
provide a way to identify overlapping �52� or hierarchical
modules �31�. �That being said, hierarchical structure poses a
special problem for modularity, because, strictly speaking,
there is no “correct” partition of a hierarchy; at best, a good
partition will identify the modules at a particular hierarchical
level. Separate tools are needed to infer distinct levels.� On
the other hand, the difficulty of constructing an unbiased
sample of an exponential number of degenerate solutions
may prevent these methods from uncovering subtle or large-
scale relationships, particularly in larger networks.

Another set of promising techniques try to estimate the
statistical significance of a high-modularity partition �18,42�,
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i.e., to answer the question of how much true structure is
captured by a particular high-modularity partition. And, tech-
niques based on local methods �56,57�, which do not attempt
to partition the entire network, or on random walks over the
network �58–61�, may provide useful alternatives to modu-
larity maximization, although these may still exhibit degen-
erate behavior.

A particularly promising class of techniques for identify-
ing modular and hierarchical structures relies on generative
models and likelihood functions. Stochastic block models
�48,62–66� and hierarchical block models �47� are attractive
because they can allow module densities to vary indepen-
dently, although their flexibility can come with computa-
tional costs and their results can be more difficult to inter-
pret. In some cases, these models can capture overlapping
modules �65�. In general, the likelihood framework presents
several opportunities not currently available for modularity-
based methods. For instance, by comparing the likelihoods
of empirical network data under different structural models,
researchers can give statistically principled answers to model
selection questions, such as, is this network more hierarchi-
cal, more modular, or neither? But, likelihood functions can
also exhibit extreme degeneracies and optimization tech-
niques for module identification should likely be treated with
caution. To ensure good results, it may be necessary to use a
sampling approach �47�.

In closing, we note that the development of objective and
accurate methods for identifying modular and hierarchical
structures in empirical network data is crucial for many
systems-level questions about the structure, function, dynam-
ics, robustness and evolution of many complex systems. The
magnitude of the degeneracy problem, and the dependence
of Qmax on the size and number of modules in the network,
suggests that modules identified through modularity maximi-
zation should be treated with caution in all but the most
straightforward cases. That is, if the network is relatively
small and contains only a few nonhierarchical and nonover-
lapping modular structures, the degeneracy problem is less
severe and modularity maximization methods are likely to
perform well. In other cases, modularity maximization can
only provide a rough sketch of some parts of a network’s
modular organization. We look forward to the innovations
that will allow it to reliably yield more precise insights.
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APPENDIX A: THE DEPENDENCE OF Qmax ON n FOR
THE RING NETWORK

A simple case where it is straightforward to work out the
precise dependence of Qmax on network size is the ring net-
work from Sec. II.

Consider such a network with k cliques, each composed
of exactly c nodes, and where we hold c constant while
increasing n, i.e., we add more modules to the ring such that
k=n /c. If the optimal partition merges � adjacent cliques
�due to the resolution limit�, then it can be shown that the
modularity is exactly

Qmax = 1 −
1

�� 1

�c

2
� + 1� −

c�

n
, �A1�

where

� = �1

4
+

n/c

�c

2
� + 1

−
1

2
= O��n� .

Thus, as n→� the second and third terms in Eq. �A1� vanish
like O�1 /�n� and Qmax→1.

As a brief aside, we now connect this result to the large-
scale behavior of the “plateau” region of the modularity
function mentioned in the main text. For concreteness, we
define the plateau as the set of partitions with modularity
scores within 10% of Qmax.

To begin, we note that the asymptotic result given above
implies that the height of the plateau, which is simply the
maximum modularity value, increases with k. We now char-
acterize the size of the plateau by considering the number of
partitions formed by merging connected cliques. As shown in
Sec. III, there are 2k such partitions for the ring network
because there are k edges connecting cliques, each of which
can be cut or not cut to create a different group.

Let Q1 be the modularity score of the intuitive partition,
i.e., the one that places each clique in its own group. It can
be shown that the ratio Q1 /Qmax is a monotonically decreas-
ing function of k whose limit is

lim
k→�

Q1

Qmax
= 1 −

1

�c

2
� + 1

. �A2�

If the cliques are composed of at least c=5 nodes, this ratio
is at least 10/11 and the intuitive partition Q1 is always some-
where within the plateau region.

If the optimal partition merges � adjacent cliques, then it
can be shown that there are at least 2k�1−1/�� partitions with no
more than � cliques in a single module and each of these
partitions will be within 10% of the maximum modularity
because Q1 bounds their modularity from below. Since
�=O��n�=O��k�, in the limit of large k, the number of par-
titions depends only on the number of cliques and we have
an exponential expansion in the number of partitions in the
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high-modularity plateau. Thus, as k grows large, both the
height and the size of the plateau increase as well, with the
latter increasing exponentially.

Although the details would change for a different network
structure, in principle, such an exponential expansion in the
size of the plateau should be universal. This provides a very
broad target for optimization algorithms.

APPENDIX B: SIMULATED ANNEALING

To initialize each SA sample run, we start the procedure at
a “random” partition, in which we first choose a number of
communities k and then assign each node to one of these
communities with equal probability.

At each step of the algorithm, a modification of the cur-
rent partition is proposed, e.g., by moving a node from one
group to another, by merging two groups or by splitting one
group into two. If this modification results in a partition with
higher modularity, the current partition is replaced with the
proposed one. Otherwise it is replaced with probability
e−��Q�/T, where �Q is the difference in modularity between
the current and proposed partition and T is the temperature
parameter, which we decrease according to the annealing
schedule �see below�. If the proposed modification is re-
jected, we retain the current partition and propose a new
modification at the next step. As T→0, the algorithm is guar-
anteed to converge to a local optimum in the modularity
function.

To implement the algorithm, we must define the set of
possible modifications �the move set�, which determines the
local neighborhood of any given partition. Different choices
of move set can drastically alter both the convergence time
of the algorithm and its ability to escape local optima. The
choice of move set can even affect the kinds of local optima
we sample �see below�. For our purposes, it is less important
that the algorithm converge on the global optimum than it is
to sample a broad section of the modularity function in a
relatively unbiased way. Some alternative heuristics for
maximizing modularity can also be used to sample the
modularity landscape, e.g., the Louvain method �25�, but
these often do so with particular biases and thus are not as
flexible as simulated annealing for obtaining a clear view of
the modularity function’s degeneracies �e.g., see Fig. 6�.

We employed two simple move sets: �i� single node
moves and �ii� a combination of single moves, merges and
splits. A single node move takes a node chosen uniformly at
random from the n nodes in the network and either moves it
to another group, chosen uniformly at random from the re-
maining groups, or places it in a new group by itself. �If the
chosen node is the only member of its group and it is suc-
cessfully moved to another existing group, the number of
existing groups decreases.� If the current partition has k com-
munities, this move set defines a local neighborhood for any
particular partition that is composed of w1=n�k−1�+n=nk
neighboring partitions. �We note that this move set is similar
to the partition modifications used in the Kernighan-Lin heu-
ristic �67�.�

In the second move set, we also allow merges and splits.
With probability pm we choose two groups uniformly at ran-

dom and merge them into a single group. Alternatively, with
probability ps we choose a group uniformly at random and
split it into two subgroups such that the number of edges
between them is minimized. �This differs from the “heat
bath” approach used in �14�.� This optimization problem is
conventionally called MINCUT and we use a standard algo-
rithmic solution for finding the minimum cut weight �68�.
This way of choosing a split for a group typically results in a
relatively good partition; in contrast, a randomly chosen bi-
partition would almost surely result in a lower modularity
score and thus would almost always be rejected. Finally, with
probability 1− �pm+ ps�, we perform a single node move as
described above. This move set defines a local neighborhood
of size w2=nk+ � k

2 �+k, where the first term comes from the
single node moves �as above� and the other terms denote the
number of merges and splits, respectively. For a particular
network, we choose pm and ps so that each individual neigh-
boring partition is proposed with roughly equal probability.

Once the move set is chosen, the convergence of the SA
algorithm is determined by the annealing schedule, which
controls the rate at which the temperature parameter de-
creases. For simplicity, we use a geometric schedule
T�t�=T0rt, where T0�0 is some initial temperature and
0�r�1 is the common ratio between successive tempera-
tures. For best results, T0 and r must typically be tuned to a
particular network topology, but so long as they are chosen
to allow the SA algorithm sufficient time to explore the par-
tition space, their values do not significantly impact our re-
sults.

Each sample run obeys a termination criterion that is de-
rived by bounding the number of failed modifications needed
to decide whether the current partition is a local optimum
with high probability. Let w� be the number of moves re-
quired to try each of the w possible modifications of the
current partition. It can be shown that

Pr�w� � 
w log w� � w−
+1.

We choose 
 such that after 
nk log�nk� rejected modifica-
tions, there is a 95% chance that there are no modifications
that would increase the modularity of the current partition.
When this criterion is met, the SA algorithm terminates. The
termination criterion is only necessary to improve the run-
ning time of the algorithm, particularly toward the end of the
annealing schedule when most proposed modifications result
in lower modularity scores.

For practical purposes, we made two slight modifications
to the SA algorithm described above. To prevent the algo-
rithm from wasting significant time oscillating between two
partitions whose modularity scores are identical, we imple-
ment a self-avoiding behavior: in addition to the ordinary
acceptance conditions, a proposal is accepted only if it rep-
resents a partition that has not previously been visited. This
requirement is very unlikely to deny the SA algorithm access
to the entire partition space for any but the smallest networks
while considerably improving the performance on larger net-
works.

The second modification concerns the initial partition as-
signment. Instead of choosing an initial value for k uniformly
from the set 1, . . . ,n�, we first select a value kmax�n and
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choose k uniformly from 1, . . . ,kmax�. For large networks,
this prevents the algorithm from spending considerable
amounts of time reducing the number of groups from O�n�
down to a more appropriate value, which mainly impacts the
running time of the algorithm.

On the choice of move set and alternative algorithms

There are any number of alternative move sets we could
have employed and we intentionally considered only the two
described above. This choice is motivated partly by conven-
tion, as previous SA algorithms for modularity maximization
�14� have employed similar move sets, and partly on theo-
retical grounds, as the single node move set constitutes the
most natural minimal changes to a partition while merge-
split moves constitute the most natural higher order or large-
scale change to a partition in a modular network. Thus, our
choices are principled, but they are not guaranteed to be
optimal. It is theoretically possible that there exists a move
set, i.e., a way of defining which partitions are “local” to
each other, such that the degeneracy problem we describe
largely disappears and the modularity function seen by this
algorithm exhibits a clear and easy-to-find global optimum.
However, the NP-hardness result of Brandes et al. �22� im-
plies that, in general, there can be no such ideal move set for
modularity maximization, i.e., one that allows us to effi-
ciently find the global optimum, unless P=NP �69�.

Alternative heuristics for optimizing the modularity func-
tion implicitly choose different move sets than the ones de-
scribed above. Thus, different algorithms will “see” different
versions of the modularity function and they may sample or
target distinct high-modularity regions of the function. To
test whether our results from SA are specific to the SA frame-
work and our selected move sets, we briefly consider
whether the partitions sampled by a very different
heuristic—Blondel et al.’s Louvain method �25�, which
builds a high-modularity partition by recursively agglomer-
ating groups of connected nodes or modules until a high
modularity is achieved—exhibit similar behavior or overlap
with those sampled by the SA approaches.

Using the Treponema pallidum metabolic network as a
realistic test case, we sample several hundred high-
modularity partitions using the Louvain method, several hun-
dred using the single node move set, and several hundred
using the move-split move set. For comparison, we include
several hundred low-modularity partitions from the single
node move set �sampled early in the SA�. Figure 7 shows the
resulting matrix of pairwise distances for these partitions
�measured by their variation of information; see below�.

Most notably, we see that there is very little overlap be-
tween the high-modularity partitions sampled by the three
heuristics, suggesting that different move sets �and thus dif-
ferent algorithms� do indeed sample distinct parts of the
modularity function. In fact, the partitions sampled by the
two SA move sets overlap very little. The fact that these
sampled regions are distinct but still exhibit very high modu-
larities �inset� reinforces the fact that the degeneracy phe-
nomenon is ubiquitous and suggests that other approaches
are likely to face similar issues.

APPENDIX C: THE DISTANCE BETWEEN PARTITIONS

We quantify the differences between partitions using one
popular notion of partition “distance” called the VI, which
was introduced by Meilă �50�. This measure satisfies the
standard axioms for a distance metric and thus preserves
many of the intuitive properties we expect from a distance
measure. Further, it does not rely on finding a maximally
overlapping alignment of the partitions, which makes it fast
to calculate. For a thorough discussion of other notions of
distance between partitions, and of the advantages of the VI
measure, see �18�.

The VI allows us to quantitatively test the hypothesis that
suboptimal high-modularity partitions disagree with the op-
timal partition mainly in small or trivial ways, which would
correspond to very small VI values �close to 0�, e.g., Fig. 5.
It also allows us to construct low-dimensional visualizations
of the sampled modularity function.

Given partitions C and C�, their VI is defined as

VI�C,C�� = H�C� + H�C�� − 2I�C;C�� �C1�

=H�C,C�� − I�C;C�� , �C2�

where H� . � is the entropy function and I�. ; .� is the mutual
information function. Using the definitions

H�C,C�� = − �
i,j

p�i, j�log p�i, j� = − �
i,j

ni,j

n
log�ni,j

n
� ,

�C3�
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FIG. 7. �Color online� For the metabolic network of Treponema
pallidum, the matrix of pairwise distances calculated from a sample
of �i� 301 unique partitions found by the Louvain method, �ii� 292
unique local optima sampled using the single node move set, �iii�
200 unique local optima sampled using the merge-split move set,
and �iv� unique 300 low-modularity partitions sampled using the
single node move set. The inset shows the corresponding modular-
ity score as a function of left-to-right ordering in the matrix. The
different sampling methods cause the coarse block structure in the
distance matrix.
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I�C;C�� = �
i,j

p�i, j�log� p�i, j�
p�i�p�j�

� = �
i,j

ni,j

n
log�ni,jn

ninj
� ,

�C4�

we can further simplify Eq. �C2� to an expression that de-
pends only on counts:

VI�C,C�� = −
1

n
�
i,j

ni,j log� ni,j
2

ninj
� , �C5�

where ni is the number of nodes in group i in C, nj is the
number of nodes in group j in C� and ni,j is the total number
of nodes in group i in C and in group j in C�. Two partitions
of the network are the same if and only if VI�C ,C��=0 and
the maximum possible VI is given by log n where n is the
number of nodes in the network.

1. Two example calculations using VI

To give the reader a more intuitive feeling for how VI
behaves, we briefly calculate a few distances using the mis-
merged partitions we encountered in the main text.

First, consider a partition, with k modules, in which one
module has g nodes. If we move h nodes from this module
into a new group, the distance between the original and the
new partition is

VI�C,C�� =
1

n
�g log g − �g − h�log�g − h� − h log h� ,

�C6�

which obtains its maximum of �g /n�log 2 when h=g /2. Fig-
ure 8 shows the functional dependence of the VI for several
choices of g and h. Most notably, under VI, partitions that
differ by a merge of two groups or a split of one group are
more distant than those that differ only by a few displaced
nodes. From the discussion in the main text, partitions that
differ by merges and splits are precisely the kind we expect
to find among the high-modularity but suboptimal partitions.

For a second example, consider the split and merge op-
eration discussed for a hierarchical network in the main text,
where the modules i= a ,b� and j= c ,d� are both of size g
and their submodules contain g /2 nodes each. The alternate
partition i�= a ,c� and j�= b ,d� has a distance

VI�C,C�� = 4�g/n�log 2, �C7�

from the original one. Thus, this split and merge operation
produces a partition that is four times the distance from the
original partition as one obtained by a single bisection of one
group �the previous example�.

Finally, we note that the VI notion of distance is not with-
out its weaknesses. The most significant of these is its unin-
tuitive scale. Further, the maximum VI scales with the num-
ber of nodes or the number of modules in the partition and,
thus, we cannot reliably compare VI distances between net-
works with different sizes or number of modules. Thus, our
results here and in the main text rely only on relative dis-
tances for partitions of the same network and not on any
particular numerical value.

2. Alternative distance measures

Although the variation of information is a satisfactory
partition distance measure for our needs, we would like to
ensure that our main results �e.g., the ruggedness of the high
modularity plateau and the large-scale structural disagree-
ments between the high-modularity partitions� do not depend
sensitively on the distance measure used. All that we techni-
cally require is a distance measure that satisfies the standard
metric axioms. Another possible choice is provided by the
Jaccard distance J, which is defined as

J�C,C�� =
a01 + a10

�n

2
� , �C8�

where a01 is the number of pairs of nodes that are in the same
module in C but different modules in C� and vice versa for
a10.

Figure 9 shows the reconstructed modularity function for
the T. pallidum metabolic network using the Jaccard distance
in place of the variation of information. Although the precise
shape of the modularity function is different, we observe the
same qualitative behavior present in the VI landscape: a rug-
ged high-modularity plateau surrounded by a sea of lower
modularity partitions. Furthermore, the Jaccard distance
yields similar results to the variation of information when
conducting the coarse-graining analysis outlined in Sec. VI.
This suggests that our results do indeed capture real proper-
ties of the modularity landscapes of these networks and do
not depend on our choice of distance measure.
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FIG. 8. The variation of information �VI�, as a function of the
size of the original module, when we move a single node into a new
group, move 1/4 of the original nodes into a new group, or move
1/2 of the original nodes into a new group. In all cases, the VI
increases monotonically, but with a slope that depends on the frac-
tion of the original module being moved.
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APPENDIX D: CURVILINEAR COMPONENT ANALYSIS

In principle, a matrix of pairwise VI distances for parti-
tions of a network �like the one shown in Fig. 7� contains all
the information necessary to understand the structure of the
modularity function. However, the non-Euclidean nature of
the partition space makes this information difficult to inter-
pret. Thus, we use an embedding algorithm to project the
distance matrix onto a two-dimensional Euclidean landscape.
The modularity scores of each partition provide a third di-
mension.

The projection from the original space �hereby referred to
as the data space� to the 2D landscape �known as the latent
space� can be phrased as an optimization problem: we seek
an assignment of partitions to positions in the latent space
that preserves the original pairwise distances as much as pos-
sible. The quality of any particular assignment is convention-
ally characterized by a stress function, which measures the
errors in the projected distances.

We use the CCA algorithm �51�, which preserves local
distances at the expense of some amount of distortion at
larger distances. �Other suitable embedding algorithms exist,
e.g., Sammon’s nonlinear mapping �70�, but these often have
concave error functions and are thus not guaranteed to con-
verge.� Given a set of distances dD�x ,y� in the data space, we
wish to assign distances dL�x ,y� in the latent space so as to
minimize the stress function:

Ecca =
1

2�
x,y

�dD�x,y� − dL�x,y��2F��dL�x,y�� , �D1�

where F� is a weight function. Here, we take F� to be a
linear combination of Heaviside step functions chosen to
produce a decreasing function with a null first derivative
nearly everywhere �for details, see �71��. This choice tends to

conserve shorter distances while occasionally producing
“tears” for large distances. The stress function is then mini-
mized using the optimization procedure designed by Demar-
tines and Herault �71�.

In order to generate a relatively unbiased sampling of the
modularity function from a large set of independent SA runs,
i.e., to ensure that we sample both high and low modularity
partitions and that our samples are relatively independent of
each other, we do the following. A quarter of our sampled
partitions are obtained by choosing the local optimum found
when the run terminates. Each remaining partition is chosen
by running the SA algorithm to its tth step, where t is inde-
pendently and identically distributed �iid� according to a geo-
metric distribution. By drawing only one partition from each
run, and combining results from a large number of indepen-
dent runs, we obtain a relatively even sampling of the high-
modularity region of the modularity function.

Notably, this procedure does not produce an unbiased
sample, which could be obtained using a Markov chain
Monte Carlo technique �30�. However, our goal is not a fully
unbiased sample of partitions; rather, we seek a sufficiently
even and unbiased sample of the high-modularity partitions
that we can study the question of the modularity function’s
degeneracies and get a realistic reconstruction of this region
of the modularity function. By biasing our sample in favor of
high-modularity partitions, but sampling them independently,
we can achieve that goal. The partitions with intermediate
modularity values are included to ensure some coverage of
mid- and low-modularity regions.

We validate the results of our embeddings in three ways.
First, we test whether the qualitative structure of the embed-
ded functions depends on the number of samples used. Using
the ring network, we subsampled the 997 partitions used to
construct Fig. 2 at the 25%, 50%, and 75% levels. Adding

FIG. 10. �Color online� The error rate of the embedding Ecca as
a function of the number of steps t in the optimization algorithm for
25%, 50%, 75%, and 100% of the 997 samples for the ring network
�Fig. 2�, normalized by sample size. The O�t−3� decay in the error
rate shows that the CCA algorithm is robust to the number of
samples and provides highly accurate a embedding of the original
distances.

FIG. 9. �Color online� The modularity function for the metabolic
network of the spirochaete Treponema pallidum reconstructed using
the Jaccard distance, which shows the same qualitative structure
that we observed using the variation of information. The inset
shows the rugged high-modularity region. This suggests that our
results do not depend sensitively on the choice of distance metric.
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more samples should never decrease the ruggedness in the
high-modularity region, but if the landscape changes signifi-
cantly, it could indicate a problem with the embedding. Com-
paring the results, we find that the qualitative structure of the
four landscapes—including the rugged structure of the pla-
teau region �Fig. 2, inset�—is independent of the subsam-
pling rate, suggesting that our full sample is more than ad-
equate to give an accurate representation of the modularity
function’s structure.

Second, we verify that the decrease in the stress function
Ecca is well behaved as the number of optimization steps
increases, i.e., we see no evidence for pathological behavior
in the embedding procedure. For all four of the subsampling
levels described above, we find that the error decays roughly
as O�t−3� in the number of optimization steps t �Fig. 10� and
the mean final error is roughly 10−4. Since the mean distance
between points is of order 1, this error rate implies that the
embedding is quite accurate.

Finally, we test whether our choice of F� conserves the
local structure of the modularity function. We test this by
means of a Shepard diagram �72�, which plots a random
sample of the distances in the data space against the corre-
sponding distances in the latent space. A Shepard diagram
for the embedded ring network is shown in Fig. 11. We note
that deviations from the diagonal occur primarily at larger
distances and that the local structure �bottom left of the fig-
ure� is generally well preserved. Even for those points where
distance is not preserved, the algorithm errs on the side of
assigning smaller distances, which would only tend to make
the landscape appear less rugged, i.e., more smooth, than it
truly is.

APPENDIX E: HIERARCHICAL RANDOM GRAPHS

The hierarchical random graph �HRG� model, recently in-
troduced by Clauset, Moore, and Newman �47�, provides a

simple but realistic way to generate networks with hierarchi-
cal structure. However, the full HRG model is too flexible
for our purposes. Instead, we employ a simplified version
that fixes the hierarchical structure and the way the internal
probability values vary.

Under our simplified model, we arrange n=2dmax nodes
into groups according to a balanced binary tree structure with
dmax+1 levels �Fig. 12�. We assign edges between nodes by
letting the internal probability values pr increase in their dis-
tance from the root of the tree. This regularity gives the
network an assortative structure, in which modules become
more dense as we move down in the dendrogram. Math-
ematically, we say that if the lowest common ancestor of two
nodes is at level d in the tree, they are connected with prob-
ability

pr�d� = 2d+1−dmax. �E1�

1. The optimal partition of a hierarchical network

For this simplified HRG model, we now derive an esti-
mate of the level of the hierarchy whose group structure
yields the optimal partition. For convenience, we take a
mean-field approach and consider the average modularity

Q� of an ensemble of instances drawn from the model. In
this case, the modularity function takes the form


Q� � �
i=1

k � 
ei�

m�

− � 
di�
2
m��

2	 . �E2�

Because of the symmetry of the binary tree, the optimal par-
tition must consist of groups of the same size. That is, to find
the maximum modularity partition, we must simply find the
level d� in the hierarchy that maximizes Eq. �E2�. Account-
ing for the regular way the group structure changes with the
height d from the bottom of the tree, this implies that Eq.
�E2� simplifies to


Q� = 1 −
d

dmax
− 2−d. �E3�

If we treat d as a continuous variable, we find that 
Q� is
maximized when we cut the dendrogram at

d� = log2�n ln 2� . �E4�
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FIG. 11. �Color online� Latent space distances as a function of
data space distances for a sample of 997 partitions of the ring net-
work. Point sizes are weighted by the average modularity of the two
partitions: larger circles represent distances between two high-
modularity partitions whereas small circles correspond to distances
between low-modularity partitions.

FIG. 12. �Color online� An example of our simplified hierarchi-
cal random graph �HRG� model, with 8 nodes and 4 levels �includ-
ing the leaves�, in which the nodes are organized into a balanced
binary tree and the internal probabilities increase as you move from
the root toward the leaves.
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Thus, this balanced and assortative hierarchical network
has a particular behavior with respect to its resolution limit
�32�, i.e., the resolution limit causes the optimal level to
move up in the hierarchy as the network grows. The reso-
lution limit always implies that the optimal partition is com-
posed of agglomerations of smaller modules, but in this hi-
erarchical network, these agglomerations are simply
composed of modules from lower down in the hierarchy.
This analysis, however, says nothing about the degeneracies
that characterize the modularity function in the local neigh-
borhood of the optimal partition, which we discussed in Sec.
III.

APPENDIX F: ADDITIONAL RESULTS FOR METABOLIC
NETWORKS

Figure 13 shows the reconstructed modularity functions
for two additional metabolic networks, for the mycoplas-
matales Mycoplasma pneumoniae and Ureaplasma parvum
�3 ATCC 700970� �12�.

Figure 14 shows the corresponding coarsening analyses
�analogous to Fig. 5�, which confirms that the behavior of the
T. pallidum described in Sec. VI also holds for these other
two networks. That is, for these other networks, we also find
significant variation in the composition of the largest few

(b)(a)

FIG. 13. �Color online� Reconstructed modularity functions for the metabolic networks of the mycoplasmatales Mycoplasma pneumoniae
�upper; largest component; n=354 and m=856� using 1199 sampled partitions and Ureaplasma parvum �lower; largest component;
n=300 and m=712� using 1199 sampled partitions, each showing a large amount of degeneracy among the high-modularity partitions
�insets�.
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FIG. 14. For M. pneumoniae �left� and U. parvum �right�, the fraction of the mean pairwise variation of information �distance� between
the sampled high-modularity partitions that remains when all but the k� largest groups in each partition are merged into a single group.
�Dashed lines indicate one standard deviation; insets show the cumulative distributions of the number of partitions with k groups.� Notably,
as for the T. pallidum network discussed in the main text �Fig. 5�, the distance distributions change very little when all but the largest few
groups in each partition are combined, indicating that most of the distance between partitions is driven by significant differences in the
composition of the largest few groups.
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identified modules across the high-modularity partitions, im-
plying that the degeneracies in the modularity function ex-
tend beyond simple rearrangements of the smallest modules.
Each inset shows the cumulative distribution of the number
of groups in the sampled partition. Notably, for all three net-
works, the fraction of partitions with k�9 groups is not large
enough to explain the persistence of nontrivial distances
when all but the largest groups are merged.

Note: the fraction of the original mean pairwise distance
VI shown in Figs. 5 and 14 is not guaranteed to decrease
monotonically with k�. To see why, consider the pairwise

geographic distances between all the cities in California and
New York City. The average pairwise distance is composed
of two parts: the average pairwise distance between Califor-
nian cities and the average distance from each Californian
city to New York City. If there are very many Californian
cities in our calculation, the overall pairwise average will
tend to be dominated by the former term, which has O�n2�
elements, rather than the latter, which has only O�n� ele-
ments. As we merge cities within California, the size of the
first term decreases and the average distance becomes more
representative of the distance between California and NYC.
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